Study on Feature Selection and Identification Method of Tool Wear States Based on Svm
نویسندگان
چکیده
This paper presents an on-line tool wear condition monitoring system for milling. The proposed system was developed taking the cost and performance in practice into account, in addition to a high success rate. The cutting vibration signal is obtained during the cutting process, and then extracting features using time-domain statistical and wavelet packet decomposition algorithms. It would result in two major disadvantages if creating a tool wear states identification model based on all extracted features, i.e. high computational cost and inefficient complexity of the model, which leads to overfitting. It is crucial to extract a smaller feature set by an effective feature selection algorithm. In this paper, an approach based on one-versus-one multi-class Support Vector Machine Recursive Feature Elimination (SVM-RFE) is proposed to solve the feature selection problem in tool wear condition monitoring. Moreover, in order to analyze a performance degradation process on the machine tool, Least Squares Support Vector Machines (LS-SVM) is introduced. In order to estimate the Weilin Li, Pan Fu, Weiqing Cao, STUDY ON FEATURE SELECTION AND IDENTIFICATION METHOD OF TOOL WEAR STATES BASED ON SVM 449 effectiveness of feature selection algorithm, the comparative analysis among Fisher Score (FS) Information Gain (IG) and SVM-RFE is exploited to real milling datasets. The identification result proves that: The selected feature set based on SVM-RFE is more effective to recognize tool wear state; LS-SVM wear identification method is superior to BP neural network, and it has higher identification accuracy; the proposed feature selection and identification method for tool wear states is efficient and feasible.
منابع مشابه
Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملA Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کاملDiagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data
Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...
متن کاملH-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data
Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کامل